

Capillary Ultrafiltration Module

HYDRAcap® MAX 80

Performance ¹	Filtrate Flow: Filtrate Turbidity: Bacteria removal:	15.7 – 51.0 gpm (3.6 – 11.6 m³/h) ≤ 0.10 NTU ≥ 4 log
Туре	Configuration: Membrane Polymer: Nominal Membrane Area: Fiber Dimensions: Pore size:	Capillary Ultrafiltration Module TIPS PVDF 1130 ft ² (105 m ²) ID 0.024" (0.6 mm), OD 0.047" (1.2 mm) 0.08 micron
Application Data ²	Typical Filtrate Flux Range: Maximum Applied Feed Pressure: Maximum Transmembrane Pressure Instantaneous Chlorine Tolerance: Maximum Chlorine Exposure: Maximum Feed Turbidity: Maximum Operating Temperature: pH Operating Range: Cleaning pH Range: Operating Mode:	20 - 65 gfd $(34 - 110 \text{ l/m}^2/\text{h})$ 73 psig (5.0 bar) ³ 30 psig (2.0 bar) 5000 ppm ⁴ 1,000,000 ppm-hrs 300 NTU ⁵ 104 °F (40 °C) 2.0 - 11.0 1.0 - 13.0 Outside to Inside Filtration Dead End or Cross flow mode
Typical Process C	Conditions Air Scour Rate: Air Scour Duration: Air Scour Frequency: Maintenance Clean Frequency: Maintenance Clean Duration: Disinfection Chemicals: Cleaning Chemicals:	7.3 – 9.1 acfm (12.3 – 15.4 m ³ /h) 120 – 240 seconds Once every 20 – 60 minutes 1 – 3 times per day 20 – 30 minutes NaOCI, CIO ₂ or NH ₂ CI NaOH, HCI, H ₂ SO ₄ , or Citric Acid
	A	1/2" HOSE (Min. 3/8" ID) JAIR INLET ADAPTOR

Certifications: NSF61, NSF419 (US LT2ESWTR – Public Drinking Water Compliance)


¹ Typical module performance for most feedwaters.

² The limitations shown here are for general use. The values may be more conservative for specific projects to ensure the best performance and longest life of the membrane.

³ At ≤20°C. 58psi (4 bar) between 21 - 30°C. 44 psi (3 bar) between 31 - 40°C.

⁴ For 60 minutes or less.

⁵ Higher values can be treated. Consult Hydranautics' technical staff.

Hydranautics believes the information and data contained herein to be accurate and useful. The information and data are offered in good faith, but without guarantee, as conditions and methods of use of our products are beyond our control. Hydranautics assumes no liability for results obtained or damages incurred through the application of the presented information and data. It is the user's responsibility to determine the appropriateness of Hydranautics' products for the user's specific end uses. 9/1/20

Created on 25/01/2023

pН

8.24

8.38

								Booster	Pump, Co	mpaction (7.	0 °C)					
Project r	name					UHPR	C								1/3	
Client N	ame				AM						Pe	ermeate flo	ow/train		3.80 m3/h	
Calculat	ed by				VM					roduct flow	7.60 m3/h					
HP pump flow 7.60							0 m3/h				Nu	umber of tr	ains	2.00		
Feed pressure 69.3 bar											Ra	aw water fl	ow/train		7.60 m3/h	
Feed ter	Feed temperature 7.0 °C Permeate recovery								50.00 %							
	Water pH 8.12 Membrane age							2.0 years								
	Chemical dose, mg/l None Flux decline, per year									0.0 %						
	g specific er						- 7 kWh/m	3				ouling facto			1.00	
Pass NE							3 bar					o increase			0.0 %	
Average							9 lmh					er-stage p			0.207 bar	
Average	; IIUX					0.	9 11111					ed type	hpe loss	Inc	dustrial Waste	
												etreatmen	+	IIIC	MF/UF	
											PI	etreatmen	l		MF/UF	
Pass-	Perm.	Flow /	Vessel	Flux	DP	Flux	Beta		Stagewis	se Pressure		Perm.	Membrane	Membrane	PV# x	
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Exhaust	Conc	TDS	Туре	Quantity	Elem #	
	m3/h	m3/h	m3/h	lmh	bar	lmh		bar	bar	bar	bar	mg/l				
1-1	2.1	7.6	5.5	9.2	0.7	13.4	1.02	0.0	0.0	0	68.6	242.7	PRO-LF1	6	1 x 6M	
1-2	1.7	5.5	3.8	8.7	0.4	13.6	1.03	0.0	25.0	0	93.0	782.9	PRO-XP1	6	1 x 6M	
				-												
		n (mg/l)		R	Raw Wa			eed Water		Permeate			Concentrate 1		centrate 2	
	ss, as CaC(23				237.14		237.14			0.187			24.9	474.4	
Ca						70.20				0.055 0.012				96.2 20.6	140.4 30.1	
Mg Na						15.04 22437.2				169.304					44731.7	
K						22437.2 21.47			21.47	0.202				30717.2 29.4		
NH4						572.13			21.47 72.13	6.132				782.3		
CO3						1.47		0	1.47			.000	782.3 1134.1 2.9 6.7			
нсоз						54.06			54.06	0.771				73.0		
SO4						10230.06			30.06	20.338			14015.7		104.3 20452.0	
Cl 26354.35			5	263	54.35	209.248			360	78.0	52530.7					
F 0.25				5		0.25	0.004				0.3	0.5				
NO3 1446.2			3	14	46.28		84	.980	19	66.3	2809.3					
		2.5			2.51	0.005				3.4	5.0					
		0.00			0.00			.000		0.0	0.0					
SiO2						50.03			50.03			.281		68.5	99.8	
CO2						0.57			0.57		0.57			0.57	0.57 10.42	
NH3						40.9			10.42		10.42			10.42		
TDS					61255.07 61255.07				55.07		49	8385	3.94	122087.40		

Saturations	Raw Water	Feed Water	Permeate Water	Concentrate	Limits
CaSO4 / Ksp * 100, %	12	12	0	28	400
SrSO4 / Ksp * 100, %	0	0	0	0	1200
BaSO4 / Ksp * 100, %	0	0	0	0	10000
SiO2 Saturation, %	48	48	0	88	140
CaF2 / Ksp * 100, %	0	0	0	6	50000
Ca3(PO4)2	0.0	0.0	-7.0	1.6	2.4
CCPP, mg/l	0.63	0.63	-1.04	10.72	850
Langelier index	-0.51	-0.51	-6.92	0.30	2.8
Ionic strength	1.11	1.11	0.01	2.21	
Osmotic pressure, bar	40.3	40.3	0.3	80.4	
TDS / Osmotic pressure, mg/l.bar	1427.0	1427.0	1389.9	1427.2	

8.12

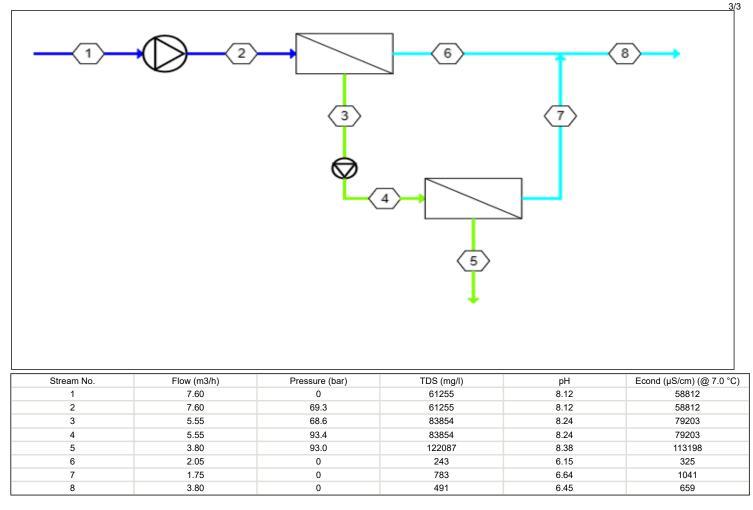
6.45

8.12

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the actual amount of chemical needed for pH adjustment is feedwater dependent hydranautics representative. Support of the approximate of product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted.

Created on 25/01/2023

								Booster	· Pump. Co	mpaction (7.	0 °C)						
Project r	name					UHPR	0				. ,				2/3		
Client Name AM					AM						Pe	ermeate flov	//train		3.80 m3/h		
Calculate	ed by				VM						To	otal plant pro	duct flow	7.60 m3/h			
HP pump flow						7.6	i0 m3/h				N	umber of tra	ins		2.00		
Feed pressure						69.	3 bar				Ra	aw water flo	w/train		7.60 m3/h		
Feed temperature						7.	0°C				Pe	ermeate rec	overy	50.00 %			
Feed Water pH						8.1	2				M	embrane ag	e	2.0 years			
Chemical dose, mg/l						Non	e				FI	ux decline,p	er year	0.0 %			
Pumping specific energy						6.3	7 kWh/m	13			Fo	ouling factor	1.00				
Pass NDP						23.	3 bar				SI	P increase, j	0.0 %				
Average flux					8.	9 lmh				In	ter-stage pip	0.207 bar					
					Feed type								Industrial Waste				
										Pretreatment					MF/UF		
Pass-	Perm.	Flow /	Vessel	Flux	DP	Flux	Beta		Stagewis	e Pressure		Perm.	Membrane	Membrane	PV# x		
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Exhaust	Conc	TDS	Туре	Quantity	Elem #		
	m3/h	m3/h	m3/h	lmh	bar	lmh		bar	bar	bar	bar	mg/l					
1-1	2.1	7.6	5.5	9.2	0.7	13.4	1.02	0.0	0.0	0	68.6	242.7	PRO-LF1	6	1 x 6M		
1-2	1.7	5.5	3.8	8.7	0.4	13.6	1.03	0.0	25.0	0	93.0	782.9	PRO-XP1	6	1 x 6M		


Pass-	membrane	Feed	Pressure	Conc	NDP	Permeat	e Water	Recovery			Permeate (Stagewise cumulative)					
Stage	no.	Pressure	Drop	Osmotic pressure		Flow	Flux		Beta	TDS	Econd (@ 7.0 °C)	Ca	Na	CI		
		bar	bar	bar	bar	m3/h	lmh	(%)		mg/l	μS/cm	mg/l	mg/l	mg/l		
1-1	1	69.3	0.14	43.3	27.1	0.5	13.4	6.6	1.02	142.4	155.3	0.016	49.028	60.600		
1-1	2	69.1	0.12	45.9	23.6	0.4	11.0	5.8	1.02	162.9	178.0	0.018	56.021	69.244		
1-1	3	69.0	0.11	48.5	21.0	0.4	9.5	5.3	1.02	181.9	198.8	0.020	62.548	77.311		
1-1	4	68.9	0.11	50.8	18.5	0.3	8.1	4.8	1.02	201.2	219.8	0.023	69.188	85.519		
1-1	5	68.8	0.10	53.1	16.2	0.3	7.0	4.3	1.02	221.4	241.8	0.025	76.149	94.123		
1-1	6	68.7	0.09	55.2	14.0	0.2	5.9	3.9	1.01	242.7	265.0	0.027	83.503	103.212		
1-2	1	93.4	0.09	60.5	34.2	0.5	13.6	8.3	1.03	427.5	466.3	0.048	147.456	182.250		
1-2	2	93.3	0.08	65.0	29.1	0.4	10.7	7.1	1.03	492.0	537.8	0.055	169.416	209.391		
1-2	3	93.2	0.07	69.4	24.8	0.3	9.0	6.5	1.02	556.1	632.8	0.062	191.449	236.620		
1-2	4	93.2	0.06	73.4	20.7	0.3	7.5	5.7	1.02	625.7	699.9	0.070	215.503	266.346		
1-2	5	93.1	0.06	77.1	16.9	0.2	6.1	4.9	1.02	701.2	771.7	0.079	241.633	298.637		
1-2	6	93.1	0.05	80.3	13.6	0.2	4.9	4.2	1.02	782.9	848.5	0.088	269.912	333.585		

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the actual amount of chemical needed for pH adjusted rependent and not membra dependent, Hydranautics does not warrant chemical consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted.

Booster Pump, Compaction (7.0 °C)

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the actual amount of chemical needed for pH adjustment is feedwater dependent hydranautics dependent hydranautics consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted.

